復(fù)納科學(xué)儀器(上海)有限公司
已認(rèn)證
復(fù)納科學(xué)儀器(上海)有限公司
已認(rèn)證
上一篇我們介紹了電極粉體材料表面 ALD 包覆的必要性以及帶來的性能改變。由于原子層沉積(ALD) 涂層的選擇眾多,,本文將選取常見的涂層的一些研究工作進(jìn)行介紹,。我們依然使用:
01PC 代表粉末 ALD 處理的樣品
02DC 代表電極表面進(jìn)行 ALD 處理的樣品
03UC 則是未處理的電極粉末樣品
多種金屬氧化物已經(jīng)被證明可用于改善鋰離子電池的電化學(xué)性能。然而,,考慮成本及工藝難度,Al2O3 是被驗(yàn)證最多的 ALD 涂層,。了解氧化鋁涂層的作用機(jī)制,,可以更好的對涂層進(jìn)行針對性開發(fā)。
氧化鋁(Al2O3)包覆對鋰離子電池(LIBs)性能提升的機(jī)理
氧化鋁(Al2O3)包覆對鋰離子電池(LIBs)性能提升的機(jī)理主要包括以下幾個(gè)方面:
改善電子和離子傳導(dǎo)性: 氧化鋁包覆能夠提供一個(gè)良好的電子絕緣層,,同時(shí)允許鋰離子通過,。這種特性有助于減少電極表面的電荷積累,從而減少電池內(nèi)部的電阻,,提高電池的充放電效率,。
抑制副反應(yīng):氧化鋁層可以作為一道屏障,減少電極材料與電解液之間的直接接觸,,從而抑制可能發(fā)生的副反應(yīng),。這些副反應(yīng)可能導(dǎo)致電解液分解,形成不穩(wěn)定的固體電解質(zhì)界面(SEI)層,,影響電池的循環(huán)穩(wěn)定性和能量密度,。
提高結(jié)構(gòu)穩(wěn)定性:在充放電過程中,電極材料會(huì)經(jīng)歷體積膨脹和收縮,。氧化鋁包覆能夠提供額外的機(jī)械支撐,,幫助維持電極的結(jié)構(gòu)完整性,減少由于體積變化引起的微裂紋的形成,,從而延長電池的使用壽命,。
減少活性材料的溶解:氧化鋁包覆能夠減少正極材料中的過渡金屬離子(如Co、Mn等)溶解到電解液中,,這些金屬離子的溶解會(huì)導(dǎo)致電池性能下降,,包括容量衰減和循環(huán)壽命縮短。
穩(wěn)定的人工SEI/CEI層:氧化鋁包覆有助于形成穩(wěn)定的人工SEI或CEI層,,這些層能夠保護(hù)電極材料不受電解液的侵蝕,,同時(shí)允許鋰離子的傳輸,,從而提高電池的電化學(xué)性能。
改善熱穩(wěn)定性:氧化鋁具有良好的熱穩(wěn)定性,,包覆后的電池在高溫下工作時(shí)能夠保持更好的性能,,減少熱失控的風(fēng)險(xiǎn)。
氧化鋁(Al2O3)包覆技術(shù)在不同類型的鋰離子電池(LIBs)中的應(yīng)用效果的差異
這主要取決于電池的正極材料,、工作條件以及電池設(shè)計(jì),。以下是一些關(guān)鍵的差異點(diǎn)【1】:
不同類型的正極材料
對于 LiCoO2 基電池,氧化鋁包覆可以有效抑制 Co 的溶解,,并改善電池的循環(huán)穩(wěn)定性和熱穩(wěn)定性,。
對于 LiMn2O4 基電池,氧化鋁包覆有助于減少 Mn 的溶解,,同時(shí)提高電池在高溫下的性能,。
對于 NMC 基電池,氧化鋁包覆可以減少Ni 的溶解,,提高電池的循環(huán)壽命和安全性,。
工作電壓和溫度
在高工作電壓下,氧化鋁包覆能夠提供更好的保護(hù),,尤其是在 4.2V 或更高的截止電壓下,,有助于維持電池的容量和延長壽命。
在高溫條件下,,氧化鋁包覆的電池通常展現(xiàn)出更好的熱穩(wěn)定性和循環(huán)性能,。
電池設(shè)計(jì)和應(yīng)用
在高能量密度的應(yīng)用中,如便攜式電子設(shè)備和電動(dòng)車輛,,氧化鋁包覆有助于提高電池的循環(huán)穩(wěn)定性和能量保持率,。
在需要快速充放電的應(yīng)用中,氧化鋁包覆可以改善電池的倍率性能,,減少在高電流充放電過程中的性能衰減,。
涂層厚度和均勻性
氧化鋁包覆的厚度和均勻性對電池性能有顯著影響。過厚的涂層可能會(huì)增加電池內(nèi)部阻抗,,而過薄的涂層可能無法提供足夠的保護(hù),。因此,優(yōu)化涂層的厚度對于不同類型的電池至關(guān)重要,。
與其他材料的協(xié)同效應(yīng)
氧化鋁包覆與其他材料(如導(dǎo)電劑,、粘結(jié)劑或固態(tài)電解質(zhì))的協(xié)同效應(yīng)也會(huì)影響電池性能。例如,,與導(dǎo)電劑結(jié)合使用時(shí),,可以進(jìn)一步提高電池的電子傳導(dǎo)性。
下面我們將從不同類型的正極材料詳細(xì)介紹氧化鋁涂層包覆技術(shù):
01/LiCoO2體系
LiCoO2 是目前商業(yè)應(yīng)用最廣泛的鋰離子電池正極材料,。然而,,Co 在電解液中的溶解會(huì)導(dǎo)致電池容量衰減,。Jung【2】等人的研究表明,通過ALD 技術(shù)在 LiCoO2 表面沉積超薄 Al2O3 涂層,,可以顯著提高其循環(huán)穩(wěn)定性,。經(jīng)過 2 個(gè)ALD 循環(huán)的 PC 樣品在 120 次循環(huán)后容量保留率達(dá)到 89%,遠(yuǎn)超未處理樣品的 45%,。
原始和 Al2O3 ALD 涂層包覆 LiCoO2 粉末制備的電極在2,、6 和 10 個(gè) ALD 循環(huán)下的充放電性能。
02/LiMn2O4 體系
LiMn2O4(LMO)是一種低成本,、高電壓的正極材料,,但其電導(dǎo)率差和 Li+ 擴(kuò)散緩慢限制了其性能。Luan【3】等人的研究中,,通過 ALD Al2O3 涂層改善了 LMO 在高溫下的性能,。通過對兩種不同尺寸的錳酸鋰顆粒進(jìn)行包覆,在1C,,2C,,5C 的倍率下測試其高溫性能,發(fā)現(xiàn)均優(yōu)于未包覆的電極,。
ALD 包覆的錳酸鋰顆粒以及在不同倍率下的兩種電極循環(huán)性能
Chen【4】等通過實(shí)驗(yàn)表征和密度泛函理論(DFT)計(jì)算發(fā)現(xiàn),Al2O3 在 10 個(gè) ALD 循環(huán)下呈現(xiàn)亞單層覆蓋(不均勻生長),。在 ALD 過程中,,LMO 與鋁前驅(qū)體表面反應(yīng)的產(chǎn)物 C2H6 氣體逐漸減少,表明在 ALD 循環(huán)過程中,,LMO 表面可用位點(diǎn)越來越少,。通過 1-2 次 ALD 循環(huán),LMO 表面缺陷趨于穩(wěn)定,,從而提高了電化學(xué)性能,。
隨著 ALD 循環(huán)次數(shù)的增加,鋁前驅(qū)體與LMO 和 Al2O3 表面反應(yīng)產(chǎn)物的相對量
03/LiNi0.5Mn1.5O4 (LMNO)體系
LMNO 是一種超高壓正極材料,,但其高電壓特性會(huì)使電解質(zhì)不穩(wěn)定,。Kim【5】等人通過 ALD Al2O3 涂層技術(shù),成功提高了 LMNO 的電化學(xué)性能,,尤其是在 5.3V 的高電壓下,,涂層顯著提高了電池的穩(wěn)定性(儲(chǔ)存壽命)和循環(huán)壽命(100h 循環(huán)后)。
在 LMNO 表面包覆 Al2O3 ALD 涂層以及在高電壓下的克容量提升
04/富鋰錳氧化物層狀復(fù)合材料
富鋰錳氧化物層狀復(fù)合材料具有高能量密度,,但循環(huán)穩(wěn)定性和過渡金屬溶解問題限制了其應(yīng)用,。Zhang【6】等人的研究表明,Al2O3 ALD 涂層能顯著提高富鋰 NMC 的循環(huán)穩(wěn)定性和容量保持率,。Al2O3 表面膜看起來均勻且在反復(fù)充電和放電過程中保持穩(wěn)定,,盡管表面阻抗很高,,但這提高了電池循環(huán)穩(wěn)定性。
左:富鋰錳正極在 (a) 室溫下和 (b) 55°C,。測試程序:循環(huán)1,,在 2.0 和 4.8V 之間,C/10 倍率下激活,;周期 2-3 為 2.0 ~ 4.6 V 之前,,C/10;循環(huán) 4-50 在 2.0 和 4.6V 間,,C/3 右:a,,d(UC);c,,d(PC)的TEM圖像
Dannehl 等人【7】進(jìn)行了一項(xiàng)高分辨率的表面研究,。結(jié)果表明,所有 PC 粉末表面都出現(xiàn)過渡金屬氧化物信號,,這表明 Al2O3 涂層發(fā)生了島狀生長,,也說明正極性能的改善并不需要完全致密的涂層。
Al2O3 在富鋰錳表面發(fā)生島狀生長,,但依然可以有效提升電池首效和循環(huán)性能,。
此外,Jurng 等人【8】認(rèn)為 ALD Al2O3 沉積在富鋰 NMC PC 正極上,,減少了過渡金屬的溶解和交換,,限制了過渡金屬在負(fù)極表面的積累,從而減少了由過渡金屬析出引起的負(fù)極表面電解質(zhì)降解,。同時(shí)觀察到石墨負(fù)極的電阻降低,,這是由于 PC 正極中過渡金屬的溶解被有效阻止。
金屬離子的溶解被ALD涂層有效降低
Yan 等人【9】探索了 Al2O3 涂層在連續(xù)流 ALD 反應(yīng)器沉積同一正極材料上的作用機(jī)制,。利用先進(jìn)的TEM和電子能量損失譜(STEM-EELS)對 PC 和 UC 正極上的 SEI 進(jìn)行化學(xué)可視化,,獲得兩種樣品在 40 次循環(huán)后的 Mn 價(jià)態(tài)分布。
Mn2+和 Mn3+ 在電解質(zhì)中具有更高的流動(dòng)性,,并且由于 Jahn?Teller 效應(yīng)(由 Mn3+ 離子引起的尖晶石立方結(jié)構(gòu)向四方相的晶體學(xué)轉(zhuǎn)變),,使其結(jié)構(gòu)不穩(wěn)定。在 UC 正極顆粒中,,Mn2+ 和Mn3+ 分別獨(dú)特地位于最外層和最內(nèi)層,,而 PC正極顆粒呈現(xiàn)出非常薄的 Mn 還原層,大多數(shù)價(jià)態(tài)都在 3+ 以上,,清楚地表明 Al2O3 涂層抑制了界面處 Mn 的還原,。
ALD的均勻包覆有效提升了循環(huán)性能
UC(a,b,c)和PC(b,e,f)Al2O3 ALD涂層LMNO 的 Mn價(jià)態(tài)分布
05/ NMC 體系
NMC 材料因其高容量和低成本而備受關(guān)注。Riley 等人【10】的研究展示了 ALD Al2O3 涂層在 NMC333 上的應(yīng)用,,證明了涂層能顯著提高電池的容量保持率和循環(huán)穩(wěn)定性,。與 UC 正極的 65% 的容量保持率相比,,UC 正極的容量保持率提高到91%,并且即使在 100 次充放電循環(huán)后,,保形涂層 Al2O3 厚度依然小至4 ?(2cycle ALD),,體系電阻也有所降低,但進(jìn)一步增加 Al2O3 的厚度會(huì)降低電化學(xué)穩(wěn)定性,。
a) ALD 包覆周期數(shù)對電池循環(huán)性能的提升,;b) 不同 ALD 厚度對于不同循環(huán)數(shù)的電池容量保持率的影響
Hoskins 等人【11】否定了僅用兩個(gè) ALD 循環(huán)就能得到合適涂層的觀點(diǎn),他們通過二次離子質(zhì)譜(SIMS)和低能離子散射(LEIS)的表面分析,,即使經(jīng)過 10 個(gè) cycle 的 Al2O3 涂層NMC333 正極顆粒表面上暴露的 Li 信號也很明顯,。
他們進(jìn)一步得出結(jié)論,ALD Al2O3 涂層會(huì)優(yōu)先覆蓋過渡金屬結(jié)合位,,這種不均勻的表面覆蓋為Li 離子的運(yùn)動(dòng)提供了無限制的途徑,。而較厚的涂層不僅會(huì)增加離子和電子流動(dòng)的阻力,而且會(huì)使單個(gè)顆粒產(chǎn)生物理隔離,,從而阻礙其與導(dǎo)電添加劑的直接接觸,。
Li、Al,、Ni,,、Mn和Co 的絕對信號計(jì)數(shù)來自 TOFSIMS。殘余信號百分比(相對于 UC),。這些值清楚地表明 ALD 優(yōu)先沉積氧化鋁在過渡金屬表面的位置,。而即便 15 個(gè) cycle 以后,Li 的信號仍然很明顯,。
NMC 的 TEM 截面圖像,分別為 ALD 4cycle,,15cycle Al2O3
進(jìn)一步增加鎳的含量有助于實(shí)現(xiàn)更高的電池容量,。富鎳氧化物正極材料因其低成本、高容量而備受關(guān)注,。雖然 Ni 占比的進(jìn)一步增加會(huì)導(dǎo)致放電容量的增加,,但會(huì)以更快的速度使熱穩(wěn)定性惡化,從而影響電池的安全性,。
為了逐步解決上述與富鎳氧化物正極材料(NMC)有關(guān)的問題,,人們開發(fā)了核-殼或全濃度梯度氧化物結(jié)構(gòu)(FCG)。該結(jié)構(gòu)還抑制了Mn2+和Mn3+ 離子態(tài)的濃度,,這兩種離子態(tài)具有較高的遷移率和溶解在電解質(zhì)中的傾向,,從而導(dǎo)致結(jié)構(gòu)的不穩(wěn)定。
這主要是由于非活性四價(jià)錳氧化態(tài)作為材料的平均氧化態(tài),。在 FCG 氧化物中,,Co 濃度保持均勻,,Mn 濃度逐漸增加,Ni 濃度從顆粒中心到表面呈線性下降在高壓充電下,,Ni 和 Mn 離子遷移到 Li 層的八面體位置,,導(dǎo)致缺陷尖晶石和巖鹽結(jié)構(gòu)的相變。
這種相變伴隨著電解質(zhì)分解和表面鈍化,,導(dǎo)致電荷轉(zhuǎn)移阻抗增長,,對更高電壓下的循環(huán)壽命產(chǎn)生負(fù)面影響,并且這種相變被認(rèn)為是從顆粒表面開始的,。Mohanty等人【12】報(bào)道了在富 Ni的FCG NMC 811 正極上鍍 Al2O3 涂層,,防止或顯著減緩高壓下電極表面相變。結(jié)果表明,,在低倍率和高倍率循環(huán)過程中,,NMC 811 正極的容量保持率提高了 40%。
高分辨率透射電子顯微鏡圖像顯示:(a–c) UC NMC顆粒,,(e,f) PC Al2O3 包覆的 NMC 顆粒,,這些顆粒分別來自經(jīng)過530、760 和 290 次充放電循環(huán)的 2Ah軟包電池,;以及來自 (d) 未涂層的 NMC,,(g) Al2O3涂層的 NMC 的選區(qū)衍射(SAED)模式圖
a)低放電倍率下 NMC 電極在 2Ah 袋裝電池中的循環(huán)性能(循環(huán)壽命)
(b)高放電倍率(1C/?1C),電壓窗3.0-4.35V,。電極在2Ah 袋裝電池中的循環(huán)性能
(c)全新電極和(d)袋裝電池回收電極
總結(jié)
ALD Al2O3 包覆技術(shù)通過改善正極材料的電化學(xué)性能,、穩(wěn)定性和安全性,為鋰離子電池的發(fā)展提供了新的解決方案,。以下是不同體系正極材料 ALD 包覆的結(jié)果總結(jié)表格:
通過這些案例,,我們可以看到 ALD Al2O3 包覆技術(shù)在提升電池性能方面的潛力。隨著技術(shù)的不斷進(jìn)步和優(yōu)化,,預(yù)計(jì) ALD 包覆將在未來的電池制造中發(fā)揮更大的作用,。
相關(guān)產(chǎn)品
更多
相關(guān)文章
更多
技術(shù)文章
2025-01-22技術(shù)文章
2025-01-20技術(shù)文章
2025-01-06技術(shù)文章
2025-01-03虛擬號將在 秒后失效
使用微信掃碼撥號