參考價格
面議型號
品牌
產(chǎn)地
澳大利亞樣本
暫無看了HPV植物莖流傳感器/植物液流計(jì)的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
HPV 莖流量傳感器/Sap Flow Sensor
HPV莖流量傳感器是一款校準(zhǔn)型,、低成本的熱脈沖液流傳感器,輸出校準(zhǔn)液流量,、熱速,、莖水含量、莖溫等數(shù)據(jù),,功耗低,,內(nèi)置加熱控制,同時改善了傳統(tǒng)的加熱方式,,其原理采用熱脈沖速率法(HPV),,測量范圍:-200~+1000cm/hr(熱流速度)或-100~+2000cm3/cm2/hr (莖流通量密度),可廣泛用于于莖流量監(jiān)測,、植物莖流蒸發(fā)計(jì)算,、植物莖流蒸騰量、植物灌溉等
植物莖流是樹木內(nèi)部的“水”運(yùn)動,,而蒸騰是從葉片通過光合作用蒸發(fā)流出的水分,。樹液流量和蒸騰量之間有很強(qiáng)的關(guān)聯(lián)性,通常理解是同一回事,。但是,,嚴(yán)格地說,它們是不同的,,這體現(xiàn)在它們是如何被測量的,。
SAP流量以L/hr(或每天、每周等)為單位進(jìn)行測量,。蒸騰量以每小時,、每天、每星期等毫米(mm)為單位測量,。
蒸散量=蒸騰量+蒸發(fā)量
蒸騰量以毫米為測量單位,,可與降雨量以毫米計(jì)作比較。隨著時間的推移,,降雨量(水輸入)應(yīng)與蒸騰量(輸出)相匹配,。如果蒸騰作用更高,通常是樹木作物的蒸騰作用,,那么這種差異必須通過灌溉來彌補(bǔ),。
蒸發(fā)量(evaporation),蒸發(fā)量是指在一定時段內(nèi),,由土壤或水中的水分經(jīng)蒸發(fā)而散布到空中的量,。
1mm(降雨量)=1㎡地面1kg水
1mm(蒸騰量)=1㎡葉面積的1升樹液流量(水)
例如:在果園和葡萄園等有管理的樹木作物系統(tǒng)中,蒸發(fā)量與蒸騰量相比非常小,。因此,,為了簡化測量,通常忽略蒸發(fā)量,,將蒸騰量取為平均蒸散量(ETo),。
技術(shù)指標(biāo)
測量范圍:-200~+1000cm/hr(熱流速度)
分辨率:0.001cm/hr
準(zhǔn)確度:±0.1cm/hr
探針尺寸:φ1.3mm*L30mm
溫度位置:外10mm,內(nèi)20mm
針距:6mm
探針材質(zhì):316不銹鋼
溫度范圍:-30~+70℃
響應(yīng)時間:200ms
加熱電阻:39Ω,,400J/m
電源:12V DC
電流:空閑5mA,, 測量<270mA
信號輸出:SDI-12
線纜:5m,Max 60m
莖流量傳感器參考文獻(xiàn):
1. Kim,, H.K.; Park,, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants.
J. Exp. Bot. 2014,, 65,, 1895–1904. [CrossRef] [PubMed]
2. Steppe, K.; Vandegehuchte,, M.W.; Tognetti,, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015,, 35,, 341–345. [CrossRef] [PubMed]
3. Vandegehuchte, M.W.; Steppe,, K. Sap-flux density measurement methods: Working principles and
applicability. Funct. Plant Biol. 2013,, 40, 213–223. [CrossRef]
4. Marshall,, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 ,, 33, 385–396.
[CrossRef] [PubMed]
5. Cohen,, Y.; Fuchs,, M.; Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4,, 391–397. [CrossRef]
6. Green,, S.R.; Clothier, B.; Jardine,, B. Theory and practical application of heat pulse to measure sap flow.
Agron. J. 2003,, 95, 1371–1379. [CrossRef]
7. Burgess,, S.S.O.; Adams,, M.A.; Turner, N.C.; Beverly,, C.R.; Ong,, C.K.; Khan, A.A.H.; Bleby,, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 ,, 21, 589–598. [CrossRef]
8. Forster,, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 ,, 8, 350. [CrossRef]
9. Bleby,, T.M.; McElrone,, A.J.; Burgess, S.S.O. Limitations of the HRM: Great at low flow rates,, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts,, Seville, Spain,, 22–24 October 2008.
10. Pearsall,, K.R.; Williams, L.E.; Castorani,, S.; Bleby,, T.M.; McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014,, 41,, 874–883. [CrossRef]
11. Clearwater, M.J.; Luo,, Z.; Mazzeo,, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels,, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 ,, 32,, 1652–1663.[CrossRef]
12. Green, S.R.; Romero,, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951,, 19–29. [CrossRef]
13. Green,, S.; Clothier,, B.; Perie,, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846,, 95–104. [CrossRef]
14. Ferreira,, M.I.; Green, S.; Concei??o,, N.; Fernández,, J. Assessing hydraulic redistribution with the
compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 ,, 425,, 21–41.
[CrossRef]
15. Romero,, R.; Muriel,, J.L.; Garcia, I.; Green,, S.R.; Clothier,, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012,, 951,, 31–38. [CrossRef]
16. Testi,, L.; Villalobos,, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 ,, 149,, 730–734. [CrossRef]
17. Vandegehuchte,, M.W.; Steppe,, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196,, 306–317. [CrossRef] [PubMed]
18. Kluitenberg,, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.
Agric. For. Meteorol. 2004,, 126, 169–173. [CrossRef]
19. Vandegehuchte,, M.W.; Steppe,, K. Improving sap-flux density measurements by correctly determining
thermal diffusivity,, differentiating between bound and unbound water. Tree Physiol. 2012 , 32,, 930–942.
[CrossRef]
20. Looker,, N.; Martin,, J.; Jencso,, K.; Hu,, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223,, 60–71. [CrossRef]
21. Edwards,, W.R.N.; Warwick,, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984,, 27, 537–543. [CrossRef]
22. Becker,, P.; Edwards,, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19,, 767–768. [CrossRef]
23. Hogg,, E.H.; Black,, T.A.; den Hartog, G.; Neumann,, H.H.; Zimmermann,, R.; Hurdle, P.A.; Blanken,, P.D.;
Nesic,, Z.; Yang, P.C.; Staebler,, R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
boreal deciduous forest. J. Geophys. Res. 1997,, 102, 28929–28937. [CrossRef]
24. Barkas,, W.W. Fibre saturation point of wood. Nature 1935,, 135, 545. [CrossRef]
25. Kollmann,, F.F.P.; Cote,, W.A., Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg,, Germany,, 1968.
26. Swanson, R.H.; Whitfield,, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,,32, 221–239. [CrossRef]
27. Barrett,, D.J.; Hatton,, T.J.; Ash, J.E.; Ball,, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 ,, 18, 463–469. [CrossRef]
28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane,, Australia,, 2016.
29. Steppe, K.; de Pauw,, D.J.W.; Doody,, T.M.; Teskey, R.O. A comparison of sap flux density using thermal
dissipation,, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 ,, 150, 1046–1056. [CrossRef]
30. López-Bernal,, A.; Testi,, L.; Villalobos,, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216,, 321–329. [CrossRef] [PubMed]
31. Forster,, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34,, 757–765. [CrossRef] [PubMed]
32. Cohen,, Y.; Fuchs, M.; Falkenflug,, V.; Moreshet,, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80,, 398–402. [CrossRef]
33. Cohen,, Y.; Takeuchi, S.; Nozaka,, J.; Yano,, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85,, 1080–1086. [CrossRef]
34. Lassoie,, J.P.; Scott, D.R.M.; Fritschen,, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23,, 377–390.
35. Wang,, S.; Fan, J.; Wang,, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015,, 79, 1545–1555. [CrossRef]
36. Bleby,, T.M.; Burgess,, S.S.O.; Adams, M.A. A validation,, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 ,, 31, 645–658.[CrossRef]
37. Madurapperuma,, W.S.; Bleby,, T.M.; Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009,, 66,, 372–380. [CrossRef]
38. Green,, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
scheduling. Acta Hortic. 2008, 792,, 321–332. [CrossRef]
39. Intrigliolo,, D.S.; Lakso, A.N.; Piccioni,, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern United
States. Irrig. Sci. 2009,, 27, 253–262. [CrossRef]
40. Eliades,, M.; Bruggeman,, A.; Djuma, H.; Lubczynski,, M. Tree water dynamics in a semi-arid,, Pinus brutia
forest. Water 2018, 10,, 1039. [CrossRef]
41. Zhao,, C.Y.; Si, J.H.; Qi,, F.; Yu,, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017,, 82,, 353–362. [CrossRef]
42. Deng, Z.; Guan,, H.; Hutson,, J.; Forster, M.A.; Wang,, Y.; Simmons,, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53,, 4965–4983. [CrossRef]
43. Doronila,, A.I.; Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015,, 17,, 101–108. [CrossRef]
44. López-Bernal, á.; Alcántara,, E.; Villalobos,, F.J. Thermal properties of sapwood fruit trees as affected by
anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
2014, 28,, 1623–1634. [CrossRef]
暫無數(shù)據(jù),!