上海奧法美嘉生物科技有限公司
已認(rèn)證
中國(guó)粉體網(wǎng)認(rèn)證電話,,請(qǐng)放心撥打
上海奧法美嘉生物科技有限公司
已認(rèn)證
摘 要:使用單粒子光學(xué)傳感技術(shù)進(jìn)行粒徑分析,,具有高分辨率和精確度的特點(diǎn),將其與激光衍射等整體檢測(cè)技術(shù)進(jìn)行比較,,應(yīng)用實(shí)例,說明了單粒子光學(xué)傳感技術(shù)對(duì)半導(dǎo)體CMP制程的必要性,。
關(guān)鍵詞:?jiǎn)瘟W庸鈱W(xué)傳感技術(shù);高分辨率,;激光衍射;化學(xué)機(jī)械研磨,;粒徑分析
Abstract:The technique of single particle optical sensing (SPOS) offers high resolution and sensitivity in particle size analysis compared with ensemble techniques like Laser Diffraction, gives a number of samples, describes the necessity of using SPOS in CMP process.
Keywords:Single Particle Optical Sensing (SPOS);High resolution,;Laser Diffraction,;CMP,;Particle size analysis
膠體混懸液與分散體有著十分廣泛應(yīng)用領(lǐng)域,而決定這些體系質(zhì)量和穩(wěn)定性的重要因素就是其內(nèi)部的粒徑分布,,因而準(zhǔn)確掌握這些體系的粒徑分布特征就能確保其在廣泛領(lǐng)域的成功應(yīng)用。相對(duì)于一些整體檢測(cè)技術(shù),,如:激光衍射技術(shù)與超聲衰減技術(shù),單粒子光學(xué)傳感技術(shù) (Single Particle Optical Sensing, SPOS) 在分辨率與精確度方面取得了重大的突破,。因此,,對(duì)多種混懸液和分散體的質(zhì)量與穩(wěn)定性的研究,,如:濃縮飲料、傳遞藥物與營(yíng)養(yǎng)用的水包油乳劑,,包衣與粘合用的高分子分散體及半導(dǎo)體CMP制程中使用的slurry等, SPOS方法更有價(jià)值。
1 粒徑分析的重要性
對(duì)多數(shù)膠體混懸液來(lái)說,,絕大多數(shù)粒子的粒徑小于1μm,,典型的平均粒徑范圍 (體積/重量分布) 為0.1~0.3μm。然而我們希望得到的是粒徑大于1μm或0.5μm這段量極少且易被忽略的粒子的信息,,因?yàn)檫@段偏離主體的尾部粒子決定了膠體乳液或分散體的質(zhì)量和穩(wěn)定性。SPOS應(yīng)用的一個(gè)典型例子是半導(dǎo)體制程中的一個(gè)工藝過程—化學(xué)機(jī)械研磨,,即稱CMP,。
CMP slurry的主要組成是氧化物,,包括二氧化硅、氧化鋁或氧化鈰,,另外還有一些專屬性添加劑。當(dāng)硅片表面經(jīng)過特定沉積或蝕刻處理后,,需用CMP slurry研磨或拋光,。通過機(jī)械研磨或化學(xué)蝕刻除去表面被覆的部分氧化物或金屬,。為獲得超大規(guī)模集成(very large scale integrated, VLSI)電路的高成品率,CMP slurry在拋光過程中決不能引進(jìn)刮痕或其它缺陷,。因此,在粒徑分布圖中監(jiān)測(cè)粒子的聚集程度及尾部大粒子的分布信息,,對(duì)于控制質(zhì)量至關(guān)重要,。膠體混懸液或分散體本質(zhì)上皆是不穩(wěn)定體系,,有許多因素包括:稀釋與pH突變導(dǎo)致的電荷穩(wěn)定作用降低;兩種組分不適當(dāng)?shù)幕旌?;泵,、濾器及管路給予的剪切力,;溫度的變化;污染物的引入,;貯存期的沉淀等等,,皆可加速其粒子聚集,。
2 傳統(tǒng)的激光衍射的分析方法
早期因?yàn)榧す庋苌鋬x分析具有動(dòng)態(tài)粒徑范圍廣(0.1~1000μm)、檢測(cè)時(shí)間短及重現(xiàn)性高等特點(diǎn),,所以常用來(lái)檢測(cè)CMP slurry的粒徑分布特征,。激光衍射儀的工作原理是基于不同性質(zhì)的兩個(gè)物理量:Fraunhofer衍射(Fraunhofer diffraction, FD) 與Mie散射 (Mie scattering, MS)。理論上講,,對(duì)于特定粒徑的粒子,激光衍射會(huì)產(chǎn)生一個(gè)明暗相間的衍射環(huán),。衍射環(huán)的位置及相鄰光環(huán)間的距離與粒子的粒徑成反比,。但是對(duì)于粒徑小于2μm的粒子,,衍射環(huán)就檢測(cè)不到,此時(shí)必須以另一種的方法,,即 MS 。該方法描述了一個(gè)特定粒子由于各點(diǎn)散射光波的相互干涉導(dǎo)致的大角散射的改變,,而這種散射角度的變化不僅取決于粒子粒徑與激光波長(zhǎng),,還與粒子的吸光性質(zhì)與折射率有關(guān),。
遺憾的是,由于LD技術(shù)綜合了上述兩種物理量的性質(zhì)而限制了儀器的分辨率與靈敏度,,也就是說,,無(wú)論是FD產(chǎn)生的衍射環(huán)的大小與亮度,,還是MS帶來(lái)的大角散射的變化情況,都是同一時(shí)間所有粒徑的粒子產(chǎn)生的單個(gè)衍射和/或散射響應(yīng)信號(hào)的疊加,。所以,這些FD和MS響應(yīng)信號(hào)的組合,,必須先經(jīng)過一些適當(dāng)?shù)姆绞胶喜?,然后通過相應(yīng)的數(shù)學(xué)運(yùn)算方法將其轉(zhuǎn)化,目的是得到相對(duì)精確且接近真實(shí)的粒徑分布圖,。眾所周知,,任何數(shù)學(xué)運(yùn)算其本身都有一定的不足,因而在給出粒徑分布圖時(shí)將會(huì)產(chǎn)生無(wú)法避免的誤差與假象,。
對(duì)超小微粒的膠體混懸液與分散體,激光衍射儀對(duì)粒徑分布圖中相對(duì)較少的尾部大粒子不敏感,,而正是這部分粒子對(duì)超小微粒的混懸液/分散體至關(guān)重要,。舉例來(lái)說,,“好”與“壞”的CMP slurry間的光散射強(qiáng)度和/或光衍射強(qiáng)度的信號(hào)凈變化值很小,小到使用現(xiàn)有的數(shù)學(xué)轉(zhuǎn)換技術(shù)都不能提供可靠的結(jié)果,。不幸的是,這少部分“尾部”大粒子分布才能提供CMP slurry是否“安全”的關(guān)鍵性信息,。
3 高分辨率和精確度的SPOS技術(shù)
相對(duì)而言,,SPOS技術(shù)對(duì)粒子的信號(hào)響應(yīng)方式是信號(hào)與特定粒子相對(duì)應(yīng)的,。信號(hào)為每一粒子相應(yīng)產(chǎn)生的一定強(qiáng)度的脈沖,而不需要進(jìn)行轉(zhuǎn)化,。粒徑分布圖中的信號(hào)直接來(lái)自于每次一個(gè)粒子的快速檢測(cè)(< 10,000/sec)。以SPOS為基礎(chǔ)的AccuSizer 780粒徑檢測(cè)系統(tǒng)(Particle Sizing Systems, Santa Barbara, CA)對(duì)濃縮混懸液進(jìn)行自動(dòng)稀釋(專利),,以確保粒徑在量程范圍內(nèi)的粒子(> 0.5 μm)逐個(gè)通過光學(xué)傳感器,因而避免粒子重疊并在粒徑分布圖中產(chǎn)生假象,。AccuSizer 780中的傳感器通過兩種不同性質(zhì)的物理作用(專利)—光消減(light extinction, LE)與光散射(light scattering, LS)對(duì)通過傳感器的粒子進(jìn)行測(cè)定。
光消減技術(shù)檢測(cè)通過流動(dòng)池的光強(qiáng)變化,,擁有檢測(cè)粒子的粒徑范圍廣且與粒子組份無(wú)關(guān)等優(yōu)點(diǎn)。然而,,它的靈敏度有限,,對(duì)于通過橫切面為400×1000μm 的流動(dòng)池所能檢測(cè)到的最小粒子粒徑為1.3μm,。另一方面,,光散射技術(shù)具有相對(duì)窄的動(dòng)態(tài)粒徑范圍 (取決于檢測(cè)器 / 放大器的飽和值),,但能檢測(cè)到0.5μm粒徑的粒子,使用大功率激光光源還能檢測(cè)到粒徑更小的粒子,。通過合并光消減和光散射響應(yīng)信號(hào),,傳感器可同時(shí)擁有這兩種方法的優(yōu)點(diǎn),,因而在不損失單粒子分辨率巨大優(yōu)勢(shì)的前提下?lián)碛邢鄬?duì)較廣的動(dòng)態(tài)粒徑范圍 (即0.5~400 μm) 。
基于SPOS技術(shù)獲得的粒徑分布來(lái)自于每一個(gè)粒子,,因而從根本上杜絕了儀器的不穩(wěn)定性和嚴(yán)重假象的實(shí)驗(yàn)結(jié)果,,而這在使用光衍射型儀器時(shí)經(jīng)常發(fā)生。由于對(duì)單個(gè)粒子進(jìn)行檢測(cè),,SPOS技術(shù)對(duì)影響CMP slurry質(zhì)量的粒子(如粒徑0.5 ~ 20 μm)提供了極高的分辨率和靈敏度。當(dāng)然,,SPOS方法對(duì)CMP slurry的絕大部分(體積比> 99.9 %)粒徑小于0.5 μm的粒子沒有響應(yīng)。這絕大部分粒子在CMP過程中不會(huì)對(duì)晶片表面造成損害,。所以,觀察粒徑分布圖中的很少一部分尾部的大粒子分布,,就可獲得許多與CMP slurry“安全性”有關(guān)的信息。
4 SPOS在CMP制程中的實(shí)例
圖1a顯示的是通過SPOS技術(shù)檢測(cè)兩份氧化鈰CMP slurry樣品得到的總體粒徑分布圖,,由圖可知slurry1的分布較好,而slurry2在容器底部產(chǎn)生沉淀,,可視為其不穩(wěn)定。很明顯,,slurry2在每一個(gè)粒徑通道比slurry1有更多的粒子,。這一差異在體積-重量分布圖中表現(xiàn)的更明顯,,如圖1b所示,。對(duì)slurry2來(lái)說,粒徑大于2μm的粒子占據(jù)了尾部(粒徑>1μm)固體粒子體積的大部分,。此外,使用SPOS技術(shù)能夠計(jì)算出任一特定粒徑范圍內(nèi)被檢測(cè)粒子體積的絕對(duì)百分比,。在slurry1中,粒徑大于1μm的粒子的體積占所有slurry中粒子體積總和的0.25%,,而在slurry2中,此值上升為0.68%,。這些結(jié)果與實(shí)驗(yàn)現(xiàn)象一致:slurry2比slurry1有更顯著的聚集,。雖然對(duì)于每一份slurry來(lái)說,,位于粒徑分布圖尾部的粒子其絕對(duì)體積很小,但是它們對(duì)slurry性能的影響卻是巨大的,。
圖2a,b顯示的是通過激光衍射對(duì)兩份相同氧化鈰樣品進(jìn)行檢測(cè)所得到的粒徑分布圖(體積-重量分布)。圖 2a假設(shè)折射率n = 1.65 + 0.01i,,圖2b把吸收系數(shù)提高10倍,即假設(shè)折射率n=1.65 + 0.1i,,兩者檢測(cè)的其他原始數(shù)據(jù)相同,。從中可以得出一些結(jié)論:如預(yù)期的那樣,slurry1的粒徑分布圖非常好,,具有一個(gè)以0.3μm為中心、相對(duì)狹窄,、接近對(duì)稱分布的峰,。然而,虛數(shù)折射率的改變引起平均粒徑漂移10%,。
比較而言,slurry2的粒徑分布圖是寬得多的雙峰分布,。在這個(gè)例子中,,假設(shè)吸收系數(shù)的改變導(dǎo)致粒徑分布峰型發(fā)生顯著改變,。然而,,真正的問題在于實(shí)驗(yàn)得出的結(jié)論:粒徑大于1μm的粒子的體積占總粒子體積的大部分(>70%),。這與前面討論的SPOS法所得到的結(jié)果 (粒徑大于1μm的粒子體積占所有粒子的不到1%) 相矛盾,而SPOS檢測(cè)結(jié)果又經(jīng)過重量分析法驗(yàn)證是準(zhǔn)確的,,因而說明圖2中的slurry2的分布是極不準(zhǔn)確的。同時(shí),,圖2b也給出了slurry1經(jīng)20s超聲后由激光衍射法檢測(cè)所得到的粒徑分布圖,。超聲后主峰集中在0.3μm,,這同slurry1相一致,然而還出現(xiàn)了一個(gè)以35μm為中心占總粒子體積50%的次級(jí)峰,,這個(gè)結(jié)果顯然又是錯(cuò)誤的。由SPOS得到的粒徑分布圖表明,,超聲有助于減少尾部大粒子的總數(shù),而不是象激光衍射法測(cè)定結(jié)果顯示的制造出大粒子,。這些結(jié)果都證明了使用激光衍射法預(yù)測(cè)slurry質(zhì)量存在著潛在的危險(xiǎn)。
圖3顯示了兩份氧化鋁CMP slurry經(jīng)SPOS檢測(cè)所得到的粒徑分布圖(以粒子百分?jǐn)?shù)表示),。一份slurry用硫酸稀釋,另一份用硝酸稀釋,。每份稀釋slurry的pH值都調(diào)到3,,得到一樣的酸度,。奇怪的是,這兩份樣品的粒徑分布圖差異顯著,。將硫酸稀釋的slurry與硝酸稀釋的slurry相比較,,在大于0.5μm處有較寬的尾部大粒子分布,。前者樣品中有70μm大粒子,而后者則沒有粒徑大于10μm的粒子,。很明顯,,硫酸的加入引起了氧化鋁粒子嚴(yán)重的聚集和絮凝。原因是:粒子間靜電斥力有助于膠體混懸液的穩(wěn)定,,離子強(qiáng)度對(duì)粒子間靜電斥力有“屏蔽作用”,;在恒定pH值條件下,加入硫酸比加入硝酸使離子強(qiáng)度增加得更多,,因而破壞了靜電斥力,大大地促進(jìn)了絮凝,。
最后,,圖4顯示SPOS檢測(cè)一份二氧化硅CMP slurry所得到的粒徑分布圖,,并將粒子數(shù)量作為傳遞系統(tǒng)中循環(huán)時(shí)間的函數(shù)來(lái)分析??梢钥闯?,在最初16小時(shí)循環(huán)過程中,粒徑分布圖中粒徑大于2μm的粒子個(gè)數(shù)沒有顯著變化,,尾部粒子總數(shù)大約為10,000粒,所占體積為0.002%,。然而,,循環(huán)24小時(shí)后,slurry 明顯表現(xiàn)出穩(wěn)定性下降的跡象,。尾部粒子總數(shù)增加到100,000粒,其所占體積也增加到0.016%,。這些結(jié)果都是十分重要的,,因?yàn)樗C明了泵帶來(lái)的壓力對(duì)二氧化硅CMP slurry有去穩(wěn)定作用。本體之外尾部大粒子/聚集粒子的體積分?jǐn)?shù)總共才變化了0.014%,,這么小的變化,,使用任何常用的整體性檢測(cè)儀是完全檢測(cè)不出來(lái)的。
5 結(jié)論
以上實(shí)例及其他許多相關(guān)例子皆闡明了SPOS技術(shù)優(yōu)異的性能與重要的作用,,那就是:只需關(guān)注粒徑分布中尾部極少數(shù)大粒子的分布,,即可獲得比整體檢測(cè)技術(shù)(如激光衍射法)多得多的有關(guān)膠體混懸液(如CMPslurry)質(zhì)量和穩(wěn)定性的重要信息。
參考文獻(xiàn):
[1] D.F. Nicoli, D.C. McKenzie and J.S. Wu, "Application of dynamic light scattering to particle size analysis of macromolecules", American Laboratory, Volume 23, No. 17, pp. 32-40 (Nov. 1991)
[2] D.F. Nicoli, J.S. Wu, Y.J. Chang, D.C. McKenzie and K. Hasapidis, "Automatic, high-resolution particle size analysis by single-particle optical sensing", American Laboratory, Volume 24, No. 11, pp. 39-44 (July 1992)
[3] D.F. Nicoli, K. Hasapidis and D.C. McKenzie, "High Resolution Particle Size Analysis by a Combination of DLS and SPOS", Lab Asia, Volume 3, Issue 5, pp. 38-40 (Oct/Nov 1996)
[4] D.F. Nicoli, J.S. Wu, Y.J. Chang, V. Ovod and K. Hasapidis, "Zeta Potential Analysis of Colloidal Systems by ELS, with Combined DLS Sizing Capability", International Labmate, Volume XXII, Issue I, pp. 20-22 (Feb/Mar 1997)
[5] D.F. Nicoli, J.S. Wu, Y.J. Chang, V. Ovod and K. Hasapidis, "Zeta potential and particle size analysis of colloids using ELS and DLS", American Laboratory (News Edition), Volume 29, No. 19, p. 12 (Sept. 1997)
[6] D. Nicoli, K. Hasapidis, P. O'Hagan, G. Pokrajac and B. Schade, "Particle size analysis of colloidal suspensions by SPOS compared to DLS: A sensitive indicator of quality and stability", American Laboratory, Volume 33, No. 1, pp. 32-39 (Jan. 2001)
本文由美國(guó)PSS公司駐中國(guó)代表,、上海雙健現(xiàn)代藥物技術(shù)公司提供,。
相關(guān)產(chǎn)品
更多
相關(guān)文章
更多
技術(shù)文章
2025-01-15技術(shù)文章
2024-12-30技術(shù)文章
2024-12-21技術(shù)文章
2024-12-18虛擬號(hào)將在 秒后失效
使用微信掃碼撥號(hào)