中國粉體網(wǎng)訊 近年來,三元正極材料不斷往高能量密度,、長壽命,、高安全性方向發(fā)展,能量密度越高,、技術(shù)工藝壁壘越高,。在當(dāng)前產(chǎn)品快速更新?lián)Q代的情況下,新進(jìn)入者短期內(nèi)無法突破關(guān)鍵技術(shù),,難以形成競爭力,。對三元正極材料的研究,需要從材料選擇,、制備工藝,、改性研究等進(jìn)行多方面的深入理解。
層狀結(jié)構(gòu) LiNi1-x-yCoxMnyO2三元正極材料
三元層狀材料LiNi1-x-y Cox MnyO2 根據(jù)Ni,、Co,、Mn三種元素比例的不同,一般可以分為兩類:一類是 Ni:Mn等比例型,如111型,,424型等,,這類材料中 Ni為+2價(jià),Co 為+3價(jià),,Mn 為+4價(jià),。另一類是高鎳材料,如523型,、622 型,、811型等,這類材料的 Ni為+2或+3價(jià),,Co為+3價(jià),,Mn為+4價(jià)。不同材料的理論比容量會有所區(qū)別,,大致為 280 m Ah·g-1,,隨著鎳含量的增加,實(shí)際比容量會相應(yīng)的增加。
三元材料中金屬元素對材料性能的作用
在鎳鈷錳三元材料中,,過渡金屬元素Ni,、Co、Mn對材料性能的作用各不相同,。其中,Ni元素的含量越高,可以為材料提供高的比容量,,但是在充電狀態(tài)下,Ni4+極其不穩(wěn)定,,容易引發(fā)材料安全性問題,;Co元素的含量越高可以減輕材料的陽離子混排程度,但是會使材料的成本顯著提高,;Mn元素的含量越高可以穩(wěn)定材料的結(jié)構(gòu),,但是會使材料的放電比容量明顯降低。因此,,不同Ni,、Co、Mn比例的材料其性能也不相同,。
三元正極材料制備技術(shù)方法研究
三元材料作為粉末晶體材料之一,,適用于制備粉末晶體的技術(shù)和方法,如共沉淀法,、高溫固相法,、溶劑熱技術(shù)、溶膠-凝膠法等。其中不同合成方法,,所制得的三元正極材料前驅(qū)體形貌,、顆粒尺寸均勻性千差萬別,繼而經(jīng)過混鋰煅燒后,,所得三元正極材料具有不同的孔結(jié)構(gòu)和顆粒尺寸,,導(dǎo)致材料的結(jié)晶度程度、離子混排程度,、脫嵌鋰離子動力學(xué),、材料結(jié)構(gòu)穩(wěn)定性和電化學(xué)性能存在明顯差異,突顯了制備技術(shù)的重要性,。
探索高性能三元正極材料LiNi1-x-y Cox Mny O2 的制備方法,,主要是通過改變合成路徑、改變反應(yīng)條件,。具體表現(xiàn)在,,一是對制備技術(shù)的優(yōu)化更進(jìn),二是對已制備三元正極材料進(jìn)行修飾改性包括摻雜(微調(diào)晶格參數(shù),,提升層狀結(jié)構(gòu)穩(wěn)定性)或是包覆修飾(隔絕與電解液的物理接觸,,提高材料的離子和電子傳導(dǎo)能力),或是制備核殼結(jié)構(gòu)及濃度梯度材料,,通過修飾改性的手段提高和改善三元正極材料的物理和電化學(xué)性能,。
三元材料的合成方法優(yōu)化設(shè)計(jì)研究
高鎳NCM 正極材料性能很大程度上取決于顆粒的尺寸和形貌,因此制備方法大多集中于將不同原料均勻分散,,得到小尺寸,、比表面積大的球形顆粒。通過不同的制備技術(shù)制備的材料顆粒尺寸和孔結(jié)構(gòu)存在明顯差別,,從而影響材料的結(jié)晶度程度,、離子混排程度、脫嵌鋰離子動力學(xué),、材料結(jié)構(gòu)穩(wěn)定性和電化學(xué)性能,。
目前,工業(yè)上三元正極材料的主流制備技術(shù):是先采用共沉淀法制備氫氧化物前驅(qū)體,,再與碳酸鋰混合煅燒的兩步法,。共沉淀法制備需要控制的參數(shù)(如pH值,反應(yīng)物濃度,,進(jìn)料流速,、攪拌速度等)較多,不同實(shí)驗(yàn)組合實(shí)驗(yàn)下制備材料,,性能差異較大,,以及后續(xù)的熱處理工藝能耗較高,。后續(xù)的制備技術(shù)改進(jìn)方向應(yīng)該采用一步低溫或者中溫合成技術(shù)。
三元材料的摻雜改性研究
在許多研究中,,已廣泛采用陽離子或者陰離子摻雜到主體結(jié)構(gòu)中以解決電極材料的結(jié)構(gòu)穩(wěn)定性,,從而提高三元材料的容量、倍率性能和循環(huán)穩(wěn)定性,。摻雜效應(yīng)可以分為三種形式:1)通過用電化學(xué)和結(jié)構(gòu)穩(wěn)定的元素取代,,減少不穩(wěn)定元素如Li和Ni的含量;2)通過穩(wěn)定Ni離子的價(jià)態(tài),,防止Ni2+離子在制備過程和電化學(xué)循環(huán)過程中從過渡金屬層遷移到Li層,;3)增加氧和金屬離子之間的結(jié)合強(qiáng)度,從而增加結(jié)構(gòu)穩(wěn)定性并減少氧氣的釋放,。通常采用的陽離子摻雜包括 Al3+,、Mg2+、Ti4+,、Na+,、Zr4+等;陰離子包括 F-,、PO43-等,。
盡管用不同的摻雜劑或摻雜方法展現(xiàn)著不同的摻雜效應(yīng),但是每種摻雜劑的效果和由濃度梯度引起的表面穩(wěn)定程度仍然是未知的,,此外,,還需驗(yàn)證電化學(xué)性質(zhì)如何隨摻雜深度的變化而變化的,因此,,應(yīng)進(jìn)行更多關(guān)于摻雜效應(yīng)、摻雜深度和摻雜方法的基礎(chǔ)研究,,以促進(jìn)高能鋰離子電池的發(fā)展,。
三元材料的表面包覆研究
由于寄生氧化還原反應(yīng)發(fā)生在固體電極和液體電解質(zhì)的界面上,影響材料的電化學(xué)性能,。通過在表面形成物理保護(hù)層以阻止電極與電解液的直接接觸,,減少寄生反應(yīng)的影響,阻止正極材料的溶解和晶體結(jié)構(gòu)的坍塌,,提高了電池循環(huán)過程中的穩(wěn)定性,。另一方面通過表面包覆提高導(dǎo)電性,以提高倍率性,。目前包覆改性研究主要集中于三個方向:包覆物質(zhì),、包覆方法和包覆程度。
包覆材料是電化學(xué)和化學(xué)惰性的:1)金屬氧化物—B2O3,、Al2O3,、Zr O2,、SnO2、TiO2,、SiO2 和 ZnO2 等,;2)磷酸鹽—AlPO4、MnPO4,、Co(PO4)3 和 Li3PO4 等,;3)氟化物—AlF3、FeF3,、CuF3 和 LiAlF4 等,;4)鋰過渡金屬氧化物—Li2ZrO3、LiVO3,、Li4Ti5O12 和 LiAlO2等,;5)界面保護(hù)層;6)導(dǎo)電聚合物
表面包覆技術(shù)具有操作相對容易,,成本低的優(yōu)點(diǎn),,具有很大的工業(yè)化潛力。然而,,理解涂層的組成和結(jié)構(gòu)及其與電極和電解質(zhì)的相互作用仍然存在巨大的挑戰(zhàn),。并且,該方法僅限于顆粒表面并且不會提高單個顆粒的質(zhì)量,。作為典型的后處理,,該方法不會增強(qiáng)原始顆粒的任何固有性質(zhì),其在電池的電化學(xué)性能中起主導(dǎo)作用,。相應(yīng)地,,這種增強(qiáng)的機(jī)會最終受到原始材料性質(zhì)的限制。
三元材料的核殼結(jié)構(gòu)和濃度梯度研究
(圖片來自:李方坤:鋰離子電池正極材料 LiNi0.6Co0.2Mn0.2O2制備改性及電化學(xué)性能)
核殼結(jié)構(gòu)是在高鎳陰極材料上實(shí)現(xiàn)均勻封裝的好方法,,制備流程圖如圖所示,。與高容量的核心具有相似的晶體結(jié)構(gòu),殼的組分是熱穩(wěn)定的鋰金屬氧化物(例如,,Li [Ni0.5Mn0.5]O2)表現(xiàn)出較高的放熱分解溫度,。這種精致設(shè)計(jì)對于確保殼的粘附性和導(dǎo)電性以及防止化學(xué)合成和電化學(xué)循環(huán)過程中發(fā)生的相分離或分離是理想的。但電化學(xué)活性外殼需要保持從芯材料到電解質(zhì)的電荷傳輸路徑,。
(圖片來自:李方坤:鋰離子電池正極材料 LiNi0.6Co0.2Mn0.2O2制備改性及電化學(xué)性能)
為了防止結(jié)構(gòu)不匹配,,研究在濃度梯度殼中包含富Ni的核與Mn等過渡金屬元素的梯度包封,通過在配備有pH指示劑和熱控制器的連續(xù)攪拌釜式反應(yīng)器中進(jìn)行的共沉淀反應(yīng)制備梯度結(jié)構(gòu),,制備流程圖如圖所示,。將形成殼的Ni、Co和Mn沉淀劑源逐漸泵入具有調(diào)節(jié)濃度的反應(yīng)器中,。從該方法獲得的每個顆粒由富含Ni的高容量塊狀內(nèi)核組成,,所述內(nèi)核被濃度梯度外殼包圍,。從殼的內(nèi)部區(qū)域到外部區(qū)域,Ni離子逐漸被Mn離子取代,。為了實(shí)現(xiàn)高容量,,具有出色的循環(huán)壽命和安全性。
小結(jié):
在三元正極材料的產(chǎn)業(yè)化發(fā)展趨勢方面,,通過材料本體設(shè)計(jì)及合適的元素?fù)诫s和表面界包覆技術(shù),,有望很好完善三元正極材料存在的缺陷性問題;先進(jìn)材料制備技術(shù)的研究及電池生產(chǎn)加工工藝對材料的規(guī)�,;瘧�(yīng)用有非常重要的影響,。未來,以高鎳材料為正極,,硅基材料為負(fù)極匹配的高能鋰離子電池或固態(tài)電池是產(chǎn)業(yè)界和學(xué)術(shù)界的研究重點(diǎn),。
參考資料:
艾靈:鋰離子電池三元正極材料 LiNi0.6Co0.2Mn0.2O2的制備及改性研究
龍君君:鋰離子電池正極材料LiNi0.6Co0.2Mn0.2O2的制備及其改性研究
李方坤:鋰離子電池正極材料 LiNi0.6Co0.2Mn0.2O2制備改性及電化學(xué)性能
電池網(wǎng):三元正極工藝壁壘高 高鎳材料龍頭占據(jù)C位
(中國粉體網(wǎng)編輯整理/青黎)
注:圖片非商業(yè)用途,存在侵權(quán)告知刪除