參考價格
面議型號
品牌
產(chǎn)地
美國樣本
暫無看了MAVEn™高通量16通道果蠅代謝監(jiān)測系統(tǒng)的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
MAVEn™高通量16通道果蠅代謝監(jiān)測系統(tǒng)
果蠅作為經(jīng)濟實用的模式動物,,可用于中樞神經(jīng)系統(tǒng)紊亂、炎癥性病變,、心血管疾病,、癌癥以及糖尿病等治療研究,而這些疾病的發(fā)生從生理上來說都與生物個體長期的代謝功能異常密切相關(guān),。
MAVEn™高通量16通道果蠅代謝監(jiān)測系統(tǒng)是由世界知名的美國Sable Systems International動物代謝測量公司生產(chǎn)的一款16通道,、高分辨率及自動化的果蠅代謝監(jiān)測儀器,可廣泛用于代謝紊亂造成的各種流行疾病治療的機理研究,。
MAVEn™果蠅代謝系統(tǒng)作為果蠅代謝分型監(jiān)測方面的權(quán)威產(chǎn)品,,主要具備以下特點:
1. 改變了傳統(tǒng)的單只果蠅的封閉或半封閉式測量模式,實現(xiàn)每個測量室都有實時氣
流通過的完全開放式測量,,避免了測量時內(nèi)出現(xiàn)缺氧(hypoxia)或高碳酸血癥
(hypercapnia),,可一次測量多達16只個體。
2. 15秒就可以完成一只果蠅的代謝監(jiān)測,,這代表了目前技術(shù)的**水平,。
3. 數(shù)據(jù)可以通過SD卡把帶時間標簽的CSV格式直接導出到電腦。
4. 可選配FLIC果蠅覓食,、AD-2果蠅活動,、氣體(氧氣、二氧化碳,、水汽以及其它可
檢測氣體)等監(jiān)測單元,。
5. 參考文獻*多,,高達4萬多篇,屬于前沿科技,。
具體性能指標:
1. 氣流流速:5毫升/分鐘-200毫升/分鐘,,質(zhì)量流量計,PID精確控制,,精度為2%,。
2. 昆蟲測量時間:15秒-3小時可程序化選擇;基線測量時間:15秒-3小時可程序
化選擇,。
3. 氣壓測量:分辨率1Pa,,精度0.05%。
4. 光照水平:0.1-5000勒克斯,。
5. 溫度測量:0-50℃,,分辨率0.01℃,精度±0.25℃,。
6. 模擬輸入:6個模擬輸入,,16bit分辨率,-5至+5伏電壓信號,,可接SSI其它儀器
或?qū)嶒炇移渌鼩怏w分析儀等,。
7. 數(shù)據(jù)格式:CSV格式;數(shù)據(jù)存儲:SD卡,,**支持32G的SD卡,。
8. 雙通道高精度差分式氧氣分析測量儀:測量技術(shù):燃料電池原理氧氣傳感器,
雙通道,;氧氣濃度量程0-100%(用戶可自定義設(shè)置5個級別),;差值量程±50%;
精度0.1%(O2濃度2-100%時),;分辨率0.0001%O2,;漂移< 0.01%每小時(溫度
恒定情況下);響應時間小于7秒,;24小時漂移<0.01%,;20分鐘噪音<3ppm RMS;
數(shù)字過濾(噪音)0-40秒可調(diào),,增幅0.2秒,,內(nèi)置A/D轉(zhuǎn)換器分辨率16bits;溫
度,、壓力補償,;傳感器溫度測量范圍0-60℃,精度0.2℃,分辨率0.001℃,;大
氣壓測量分辨率0.0001kPa,,精度為滿量程的0.05%;適用流量范圍5-2000mL/
min,;4通道模擬信號輸出(0-5V BNC)可輸出通道1的氧氣濃度,,通道2的氧氣
濃度,1和2的差值,,大氣壓;數(shù)字輸出:RS-232,;具4行文字LCD顯示屏,,帶背
光,可同時顯示2個通道的氧氣含量和它們的差值,,以及大氣壓,;獨具PID
(Proportional-Integral-Derivative)溫控單元,保證內(nèi)部氧氣傳感器溫度恒
定,,進一步提高了氧氣測量的精度和穩(wěn)定性,;供電12-24VDC,8A,,配交流電適
配器,;工作溫度:5-45℃,無冷凝,;重量6.4kg,;尺寸43.2cm×35.6cm×20.3cm
9. 超高精度二氧化碳分析測量儀:用于測量微小昆蟲(比如果蠅、蚊子等)或蜱
螨類微小動物的呼吸代謝,,可同時測量CO2濃度和H2O濃度,;CO2量程0-3000ppm;
準確度<1%,;分辨率0.01ppm,;H2O量程0-60mmol/mol;準確度1%,;
10. 二次抽樣單元:內(nèi)置氣泵,、精密針閥、質(zhì)量流量計,,可用來給氣流樣本做二次
抽樣,,也可單獨作為氣源使用;流量范圍5-2000mL/min,;精度為讀數(shù)的10%,;
分辨率1mL/min;具備2行顯示LCD顯示屏;帶0-5V BNC模擬信號輸出,;數(shù)字輸
出RS-232,;供電12-15VDC,20-350mA,,配交流電適配器,;工作溫度:0-50℃,
無冷凝,;重量1.5kg,;尺寸16cm×13cm×20cm;
產(chǎn)地:美國
文獻案例:
在2016年已發(fā)表的果蠅有關(guān)文獻中,,使用SSI果蠅代謝監(jiān)測系統(tǒng)的達14篇,,2015年11篇,截止目前相關(guān)文獻共計500多篇,。
1.Andrew N R,, Ghaedi B, Groenewald B. The role of nest surface temperatures and the brain in influencing ant metabolic rates[J]. Journal of Thermal Biology,, 2016,, 60: 132- 139.
2.Baaren J, Dufour C M S,, Pierre J S,, et al. Evolution of life‐history traits and mating strategy in males: a case study on two populations of a Drosophila parasitoid[J]. Biological Journal of the Linnean Society, 2016,, 117(2): 231-240.
3.Bartholomew N R,, Burdett J M, VandenBrooks J M,, et al. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia[J]. Scientific reports,, 2015, 5.
4.Basson C H,, Clusella-Trullas S. The behavior-physiology nexus: behavioral and physiological compensation are relied on to different extents between seasons[J]. Physiological and Biochemical Zoology,, 2015, 88(4): 384-394.
5.Bosco G,, Clamer M,, Messulam E, et al. EFFECTS OF OXYGEN CONCENTRATION AND PRESSURE ON Drosophila melanogaster: OXIDATIVE STRESS,, MITOCHONDRIAL ACTIVITY,, AND SURVIVORSHIP[J]. Archives of insect biochemistry and physiology, 2015,, 88(4): 222-234.
6.Casas J,, Body M,, Gutzwiller F, et al. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp[J]. Journal of insect physiology,, 2015,, 79: 27-35.
7.Correa Y D C G, Faroni L R A,, Haddi K,, et al. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais[J]. Pesticide biochemistry and physiology, 2015,, 125: 31-37.
8.DeVries Z C,, Kells S A, Appel A G. Estimating the critical thermal maximum (CT max) of bed bugs,, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,, 2016, 197: 52-57.
9.Dreiss A N,, Séchaud R, Béziers P,, et al. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl[J]. Oecologia,, 2016, 180(2): 371-381.
10.Duun Rohde P,, Krag K,, Loeschcke V, et al. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population[J]. International Journal of Genomics,, 2016,, 2016.
11.Fischer K E, Gelfond J A L,, Soto V Y,, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life[J]. PloS one, 2015,, 10(5): e0126644.
12.Groom D J E,, Toledo M C B, Welch K C. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient[J]. Journal of Comparative Physiology B,, 2016: 1-18.
13.Gudowska A,, Boardman L, Terblanche J S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper,, Paracinema tricolor[J]. Journal of Experimental Biology,, 2016: jeb. 135129.
14.Haddi K, Mendes M V,, Barcellos M S,, et al. Sexual Success after Stress? Imidacloprid- Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros[J]. PloS one,, 2016, 11(6): e0156616.
15.Haddi K,, Oliveira E E,, Faroni L R A, et al. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae)[J]. Journal of economic entomology,, 2015: tov255.
16.Horváthová T,, Antol A, Czarnoleski M,, et al. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea,, Malacostraca)?[J]. ZooKeys, 2015 (515): 67.
17.Kivel? S M,, Lehmann P,, Gotthard K. Do respiratory limitations affect metabolism of insect larvae before moulting: an empirical test at the individual level[J]. Journal of Experimental Biology, 2016: jeb. 140442.
18.Lebeau J,, Wesselingh R A,, Van Dyck H. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes[C]//Proc. R. Soc. B. The Royal Society, 2016,, 283(1830): 20160455.
19.MacMillan H A,, Schou M F, Kristensen T N,, et al. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura[J]. Biology letters,, 2016, 12(5): 20160123.
20.Meyers P J,, Powell T H Q,, Walden K K O, et al. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression[J]. Journal of Experimental Biology,, 2016: jeb. 140566.
21.Plav?in I,, Sta?ková T, ?ery M,, et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,, 2015, 170: 19-27.
22.Rodrigues C G,, Krüger A P,, Barbosa W F, et al. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera)[J]. Journal of economic entomology,, 2016,, 109(3): 1001-1008.
23.Thienel M, Canals M,, Bozinovic F,, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,, 2015, 183: 126-130.
24.Williams C M,, Chick W D,, Sinclair B J. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth[J]. Functional Ecology, 2015,, 29(4): 549-561.
25.Williams C M,, Szejner-Sigal A, Morgan T J,, et al. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates[J]. Integrative and comparative biology,, 2016: icw009.
暫無數(shù)據(jù)!